University of
Southampton

Evaluating Hardware Reliability in the
presence of Soft Errors

Bing Xue Mark Zwolinski

26-5-2022

Introduction

« Research Motivation
 Proposed Method with details
« Results with explanation

e Conclusions

s

University of

outhampton

University of
@Southampten

Single Event Upset

« Fault model: Single Event Upset (SEU)

« A major concern in terrestrial commercial digital circuits.
An energetic particle(an alpha/neutron particle)

\ reverse.

state

An energetic particle

R

Combinational [Latched,
Logic SET

Single Event Transient (SET)

University of
Southampton

Research Motivation

« Single Event Upset

« Simulation-based Fault Injection

Inputs outputs
* Problems:
1. Impossible to test all potential faults
2. Limited fault coverage)

3. Root cause faults

fault
« Can we solve these problems O — monitor response

with a backward-tracing approach? forward tracing

® O ©

University of
@Southampten

Test Platform

« RISC-V: an open-source Instruction Set Architecture

« |bex core: an open-source 32-bit RISC-V 2-stage CPU core
71 registers (2008 bits)

Ibex Core

debug req i

Instruction Mem

Tl '
'\.‘HE.-'_" %
i |—
(= =}

BB

=)

g

_|
=00

Data Mem

l

addro

fLIJSLJ wdaia__u32
A rdata | =

Reg File oz i
oo™ 1 csr
&lowRISC B o

University of
@Southampten

Proposed Method

« Formal verification

« Backward-tracing: from specification
to find candidate faults

outputs

« Candidate faults
« Exhaustively search

« Reasonable time

possible
faults

—n Specify fault-free effects
backward tracing 0 wrong results, crash, hang)

University of
Southampton

Methods

« 1. Implement a fault injection mechanism
« 2. Develop properties that can search and categorize faults
« 3. Abstract memories and develop constraints

* 4. Run model checking and Cone-Of-Influence (COIl) analysis in parallel

Methods

1. Fault injection (FI) mechanism

How to prove the mechanism has
no impact on the Ibex core?

Strobe properties

Ibex Core
Same Inputs =—1—> (Golden)

Ibex Core

—| (with FI)

No Fault =——>

—

Compare
Strobe signals

s

University of

outhampton

University of
Southampton

Methods

2. Formal properties

« Find faults according to the effects of faults (Silent Data Corruption, crash, hang,
nothing)

) SDC StrObe pl’Operties assert_st-jre_access_fault: assert property {
« Crash: exception code stored in a CSR @(posedge clk i) disable iff (lrst_ni)
(crash priv mode=— Y |->»
° Hang: (crash mcause gl=)) ;
Wait For Instruction
Dead State
Live State

« Be careful with liveness!

University of
Southampton

MEthOdS Black Boxed

« 3. Abstract memories and develop constraints /ﬂmwIi g

« Constraints: () o

« a. Follow the hand-shake communication protocol E& ’ -

- b. Data from Data Mem are arbitrary ‘% et

« C. Instructions from Ins Mem are legal RV32IMC E E
instructions, depending on address - o g

Methods

4. Model checking & COI analysis

Model checking: find faults which violate specifications

COl analysis: find faults which are structurally safe

outl I=2

out2 cd

counter-
example

s

University of

outhampton

SO assign outl = a+b;
*| resetall assign out2 = c-d;
sel_1
T
S1 S2 r
a e — a j——
c==3 c==
|
Y
\F
sel 2
T
S3 S4 -
b==2 b==inl
d== d==
Path sel_1 | sel_2 | state transition | inl | outl
1 0 [l S0-52-54 0 =3-3
2 0 [l S0-52-54 1 (=3=4
3 0 0 S0-S52-54 2 =3=5
4 0 0 S0-S52-54 3 (=3=6
Hto 8 i 1 S0-52-53 X -3-5
9 | 0 Si-51-54] (=1-00
10 1 [l S-51-54 1 -1-2
11 1 0 Si-51-54 2 -1-3
12 1 0 S0-51-54 3 -1-4
13to 16| 1 1 S0-51-53 X -1-3

s

University of

outhampton
Results
Name Proven Bounded Failure|Name Proven Bounded Failure
Instruction_is_done 81 689 1238 |memory_read data 81 710 1217
Instruction 81 675 1252 |memory_read_mask 81 739 1188
rs1 _address 81 691 1236 |memory_write data 81 704 1223
rs2_address 81 693 1234 |memory write mask | 81 736 1191
rd_address 81 690 1237 |Insn_access_fault 2002 0 6
rsl read data 81 692 1235 ||lllegal _insn 1908 5 95
rs2_read data 81 693 1234 |breakpoint 1963 2 43
rd_write_data 81 689 1238 |load_access_fault 2006 0 2
current_pc 81 690 1237 |store_access_fault 2006 0 2
next_pc 81 689 1238 |Ecall_ Mmode 2004 0 4
memory_address 81 693 1234 |Hang_WFI 1995 10 3

University of
Southampton

Results
Name Proven Bounded Failure
 Proven: all faults in a bit cannot Instruction 31 1252
cause a corresponding error. crash|insn_access_fault 2002 6
« Bounded: a fault in a bit is Hang_ WFI 1995 3

to cause a corresponding error.
If there exists a failure, it is beyond the (time/trace) limit.

« In formal verification, bounded proof is an acceptable type of results. It is hard to
fully prove some formal properties due to various reasons (state explosion,
resource limit).

« Failure: a fault in a bit can cause a corresponding error.

« Sum of Proven, Bounded, and Failure in each error type is 2008 - 2008 bits in the
core.

« Now we know vulnerability of each bit & possible fault effects in each bit.

University of
Southampton

Findings

« Some registers are more vulnerable than others:
faults in some registers can cause multiple types of errors
faults in some registers cannot cause errors

« We can use formal verification to find and classify faults according to fault effects.

« Some bits are vulnerable to certain errors:
faults in some bits cannot cause crash or hang_WFI but can cause SDC

« Even in the same register, fault effects in different bits may be different.

University of
Southampton

Conclusions

« Our method combines formal verification and fault injection, exhaustively searchs
the whole state space and the fault list, and performs backward tracing of SEUs.

« Our method can successfully categorize SEU effects in hardware.

 Next Steps:
— Hang (Dead State & Live State) - avoid liveness in formal verification

— Protection - we have shown some bits are vulnerable to certain errors; we can use
different technologies (with different costs and different efficiencies) to protect different

vulnerable bits.

— Evaluation - we can use the proposed method to evaluate different protection
technologies.

Questions?

s

University of

outhampton

