
1

Evaluating Hardware Reliability in the

presence of Soft Errors

Bing Xue Mark Zwolinski

26-5-2022

2

Introduction

• Research Motivation

• Proposed Method with details

• Results with explanation

• Conclusions

3

Single Event Upset

• Fault model: Single Event Upset (SEU)

• A major concern in terrestrial commercial digital circuits.

0

An energetic particle(an alpha/neutron particle)

reverse

state
1

1
Combinational

Logic

Latched

SET

An energetic particle

Single Event Transient (SET)

4

Research Motivation

• Single Event Upset

• Simulation-based Fault Injection

• Problems:

1. Impossible to test all potential faults

2. Limited fault coverage

3. Root cause faults

• Can we solve these problems

with a backward-tracing approach?

5

Test Platform

• RISC-V: an open-source Instruction Set Architecture

• Ibex core: an open-source 32-bit RISC-V 2-stage CPU core

71 registers (2008 bits)

6

Proposed Method

• Formal verification

• Backward-tracing: from specification

to find candidate faults

• Candidate faults

• Exhaustively search

• Reasonable time

7

Methods

• 1. Implement a fault injection mechanism

• 2. Develop properties that can search and categorize faults

• 3. Abstract memories and develop constraints

• 4. Run model checking and Cone-Of-Influence (COI) analysis in parallel

8

Methods

• 1. Fault injection (FI) mechanism

• How to prove the mechanism has

no impact on the Ibex core?

• Strobe properties

Ibex Core

(Golden)

Ibex Core

(with FI)

Same Inputs

No Fault

Compare

Strobe signals

9

Methods

• 2. Formal properties

• Find faults according to the effects of faults (Silent Data Corruption, crash, hang,

nothing)

• SDC: Strobe properties

• Crash: exception code stored in a CSR

• Hang:

Wait For Instruction

Dead State

Live State

• Be careful with liveness!

10

Methods

• 3. Abstract memories and develop constraints

• Constraints:

• a. Follow the hand-shake communication protocol

• b. Data from Data Mem are arbitrary

• c. Instructions from Ins Mem are legal RV32IMC

instructions, depending on address

Black Boxed

i
b
e
x

c
o
r
e

11

Methods

• 4. Model checking & COI analysis

• Model checking: find faults which violate specifications

• COI analysis: find faults which are structurally safe

out1 != 2 out1

a

b

sel_1

state

sel_2

in1

out2 c d

counter-

example

12

Results

Name Proven Bounded Failure Name Proven Bounded Failure

Instruction_is_done 81 689 1238 memory_read_data 81 710 1217

Instruction 81 675 1252 memory_read_mask 81 739 1188

rs1_address 81 691 1236 memory_write_data 81 704 1223

rs2_address 81 693 1234 memory_write_mask 81 736 1191

rd_address 81 690 1237 Insn_access_fault 2002 0 6

rs1_read_data 81 692 1235 Illegal_insn 1908 5 95

rs2_read_data 81 693 1234 breakpoint 1963 2 43

rd_write_data 81 689 1238 load_access_fault 2006 0 2

current_pc 81 690 1237 store_access_fault 2006 0 2

next_pc 81 689 1238 Ecall_Mmode 2004 0 4

memory_address 81 693 1234 Hang_WFI 1995 10 3
SDC

crash

13

Results

• Proven: all faults in a bit cannot

cause a corresponding error.

• Bounded: a fault in a bit is less likely

to cause a corresponding error.

If there exists a failure, it is beyond the (time/trace) limit.

• In formal verification, bounded proof is an acceptable type of results. It is hard to

fully prove some formal properties due to various reasons (state explosion,

resource limit).

• Failure: a fault in a bit can cause a corresponding error.

• Sum of Proven, Bounded, and Failure in each error type is 2008 – 2008 bits in the

core.

• Now we know vulnerability of each bit & possible fault effects in each bit.

Name Proven Bounded Failure

Instruction 81 675 1252

Insn_access_fault 2002 0 6

Hang_WFI 1995 10 3

SDC

crash

14

Findings

• Some registers are more vulnerable than others:

faults in some registers can cause multiple types of errors

faults in some registers cannot cause errors

• We can use formal verification to find and classify faults according to fault effects.

• Some bits are vulnerable to certain errors:

faults in some bits cannot cause crash or hang_WFI but can cause SDC

• Even in the same register, fault effects in different bits may be different.

15

Conclusions

• Our method combines formal verification and fault injection, exhaustively searchs

the whole state space and the fault list, and performs backward tracing of SEUs.

• Our method can successfully categorize SEU effects in hardware.

• Next Steps:

– Hang (Dead State & Live State) – avoid liveness in formal verification

– Protection – we have shown some bits are vulnerable to certain errors; we can use

different technologies (with different costs and different efficiencies) to protect different

vulnerable bits.

– Evaluation – we can use the proposed method to evaluate different protection

technologies.

16

Questions?

