f EmLogic

UVVM

UVM for VHDL designers
— An introduction

DVClub, 28 June 2022

The Norwegian Embedded Systems and FPGA Design Centre

£ EmLogic

= Independent Design Centre for Embedded Systems and FPGA

= Established 1st of January 2021. Extreme ramp up
* January 2021: 1 person
* June 2022: -> 23 designers (SW'8 HW:3, FPGA:10) - And still growing...

= Continues the legacy from '::': bltllls

* All previous Bitvis technical managers are now in EmLogic

* Verification IP and Methodology provider

® Course provider within FPGA Design and Verification
* Accelerating FPGA Design (Architecture, Clocking, Timing, Coding, Quality, Design for Reuse, ...)
®* Advanced VHDL Verification — Made simple (Modern efficient verification using UVVM)

= A potential partner for ESA projects for European companies
* Increased opportunities due to Norway's low geo return

2 UVVM: UVM for VHDL designers - An introduction £ Em LogiC

UVVM = Universal VHDL Verification Methodology

What is UVVM?

VHDL }/erification Library & Methodology
Free and Open Source

Very structured infrastructure and architecture
Significantly improves Verification Efficiency
Assures a far better Design Quality DOULOS

| A
Recommended by Doulos for Testbench architecture X_ esa

ESA projects to extend the functionality

IEEE Standards Association Open source project RAARZAY0]2d J\

Included with various simulators SJEMENS Menlar ALDEC
Runs on GHDL

eeeeeeeeeeeeeee

3 UVVM: UVM for VHDL designers - An introduction £ Em Logl C

UVVM: UVM for VHDL designers

VHDL was declared as "dying" already in 2003
- and in 2007, - and

BUT - According to Wilson research September 2020:
VHDL for FPGA: >50% world-wide

W VL e

- Low user threshold
- Logical evolution on VHDL

- Low cost solution
- More efficient VHDL designers

4 UVVM: UVM for VHDL designers - An introduction £ Em Logl C

Design Projects

50%

40%

30%

20%

10%

)
& & & & & & = <
& ¢ o o & o &
¥ 6*0) (v (o4 &Q‘
&
&
&

UVVM - World-wide

« Number 1 world-wide for VHDL verification *1
« Number 1 in Europe, indep. of language *!

UVVM

« Number 2 world-wide, indep. of language *!
By far, the fastest growing, indep. of language™!

LA — S —

100% up
in 2 years

& & @‘B

®2012 =2016 =2020

& &S e e

* According to Wilson Research, per Sept. 2020

60
&

S X
@ ¥

** Multiple answers possible

Example on test sequencer code
and transcript/log

Testbench
clock generator (clk, GC_CLK PERIOD) ; clk gen IRQC
::Iclk _
test arst irq2cpu [
seque <% SBI (PIF)
log (ID_LOG_HDR, "Check Interrupt trigger clear mechanism") ; ncer | —7*| irq_source(n)
check value (irg2cpu, '0', "irg2cpu default inactive");

check stable(irg2cpu, now — v_reset time, "Stable irg2cpu");
gen pulse(irq _source, 'l', C_CLK PERIOD, "Set IRQ source for clock period");

await value (irg2cpu, 'l', 0 ns, 2* C_CLK_PERIOD, "Interrupt expected");
All procedures with:

sbi_write(C_ADDR ITR, x"AA", "ITR : Set interrupts"); -
- Positive acknowledge
_ : If wanted
2000.0 ns Check Interrupt trigger clear mechanism
___ - Alert message
and mismatch report

- Alert count and ctrl

2020.0 ns SBI write(A:x"2", x"AA") completed. ITR : Set interrupts

6 UVVM: UVM for VHDL designers - An introduction £ Em LogiC

FEile

Edit Vig

File Edit Vi

Result in Simulator

B

& sim - Default
-z E

IO-AF || ROo-#T|

%928 c@l

firgc_th/frd
TlInsiﬁnce |Design unit |Design unit type |T0|3 Category j firgc_tb fwr
_,—- irgc_tb irgc_tb(func) Architecture DU Instance firgc_tb/din
+ [l i_irqc irge(rt) Architecture DU Instance firgc_tb /dout
& line__144 irqc_tb(func) Process firge_tb/rdy
_mai irge_tb(func) Process — C2P, P2C and Regs
B standard standard Package Package &< iirge_corefp2c
B textio textio Package Package £ rw_er
W =td_logic_1164 std_logic_1... Package Package
B numeric_std numeric_std Package Package j

| |

g gl gl
oo
3947500 ps
Cursor 1 3720459 ps

{401

H # x|

[uli]

D] K

(-] Transcript

Vv I

o | Message

TJ"-;"'-:T
UVWVM: gID SEQUENCER ST

IP{ ID_POS “’ID
T M - I

UVWVM: "ID BFM
TTI’.:IIZ)_BFM
UVVM: ID BFM
N e _—_—

M=

CEU

await_walue(std logic 1, 0
0 ns.
Pulse reset
await_ walue (std logic 0, U
0 ns. Interrupt deactivatio

2510.0 ns

Stam p‘ls TB Seq.

29 TB seq SBI check({R:x"1", x"00™)
2 5BI check({&:x"0", x"00")=>
2 SBI check({&:x"4", ="00")=>

ns, 10 ns) => OH.

Interrupt activaticM\1 ected

TVVM:
UVWVM:
UVWM: ID LOG HLOR Check Reset
VWM ————--—————
UVWVM: ID SEQUENCER - Activate all interrupts
UV TR === == == R T T e T T T e e T
TV D BFM \ 5BI write({&A:x"1", x"FF") completed. IER : Enable all interrupts
UvWM: ID BFM S5BI write(RA:x"5", x"01") completed. TRQ2CPU ENA : Rllow interrupt to

Condition occurred after

ns, l§'131 g’.e Condition occurred after

n
O, read data
0K, read data
-
0

i

K, read data = x"00"

x"0o".

IER all inactiwe
IER all inactiwe

IFR all inactiwe)

HOTE
TB _NOTE

MANUAL C
ERRCR

FAILURE

h

TBE_ERRCR : 0 a a ok

REGARDED
i} 0 1] ok

EXPECTED IGNORED Comment?

ok

HECKE : ok
|j |j nj ok

Q a a ok

>» Simalation SUCC

|
|
|
e | '
b s\ | St summa ry =
A
|
|
|

‘E55: No mismatch between counted and expected serious alerts

U W W WY Y S Y- - U - W W - - -

Proiect * hitviz irac MNow' 2947 500 pe Delta: 0 firac thics

H A x|

|« |

UVVM Utility Library

Testbench infrastructure library

log(), alert(), report_alert_counters()
check_value(), await_value()

check_stable(), await_stable()
clock_generator(), adjustable_clock_generator()
random(), randomize()

gen_pulse()

block_flag(), unblock_flag(), await_unblock_flag()
await_barrier()

enable_log_msg(), disable_log_msg()

to_string(), fill_string(), to_upper(), replace(), etc...

normalize_and_check()

set_log_file_name(), set_alert_file_name()
wait_until_given_time_after_rising_edge()
etc...

8 UVVM: UVM for VHDL designers - An introduction

£ EmLogic

Simple data communication

p_main (test-sequencer)

uart_transmit(x"2A")
sbi_check(C_RX, x"2A")

sbi_write(CLTX, x"B3")

BEM

uart_expect(x"B3")

BEM

May use Utility Library
and provided BFMs

Free, Open source BFMs:

UART, AXI4
AXI4-stream,

Avalon MM
Avalon stredmT, Griv, Sb
GMII, RGMII, ...

Quick References are provided ‘

TB: 172 ns. uart tb uart transmit(x2A) on UART RX

TB: 192 ns. uart tb sbi_ check(xl, ==> x2A) completed. From UART RX
TB: 192 ns. uart tb sbi write(x2, ==> xB3) completed. To UART TX
TB: ERROR:

TB: 192 ns. uart tb

TB: value was: 'xB2'. expected 'xB3'.

TB: (From uart_expect (xB3))

TB:

9 UVVM: UVM for VHDL designers - An introduction

£ EmLogic

AXI-stream - BFM based TB

- as simple as possible

clock_generator BFM based Testbench = No test harness (for simplicity)
L nElin = Sequencer has direct access

(test-sequencer) DUT to DUT signals

;;(is..._tx(data, s AXIS ‘ AXIS * Thus BFMs from p_main can

axis..._rx(data, ...); Jeve | FIFO . also see the DUT signals

UVVM_Light (from github) = Simplified UVVM
il * For simple usage
uvvm_ util (librar
log,_checgc vaJYI):le, await _value, etc.. = Subset of UVVM
No VVCs or VCC support
xistream transmit(data, .) (procedure) = All BFMs in the same
axistream receive (data, (procedure) . .
axistream:expect(data, (procedure) dlrectory and Ilbrary

etc..

Only need to download from Github (clone or zip) and compile (total 5 min)

10 UVVM: UVM for VHDL designers - An introduction £ Em LogiC

Resulting transcript +Debug

Note: Removed Prefix and Scope to show on a single line.

axistream transmit(v_byte array, msg, clk, m _axis);

ID BFM 106.0 ns axistream transmit(3B)=> Tx DONE.
axistream expect(v_exp array(0 to 2), "", clk, s_axis);
ID BFM 122.0 ns axistream expect(3B)=> OK, received 3B.

May add more info for debugging

enable log msg(ID PACKET INITIATE) ; enable log msg(ID PACKET DATA) ;
ID PACKET INITIATE 52.0 ns axistream transmit (3B)=>
ID PACKET DATA 52.0 ns axistream transmit(3B)=> Tx x"00", byte# 0.
ID PACKET DATA 68.0 ns axistream transmit(3B)=> Tx x"0l", byte# 1.
ID PACKET DATA 82.0 ns axistream transmit(3B)=> Tx x"02", byte# 2.
ID PACKET COMPLETE 106.0 ns axistream transmit(3B)=> Tx DONE.

May add similar debugging info for data reception

11 UVVM: UVM for VHDL designers - An introduction £ Em Logl C

'

UVVIM_Light-raster

demo_th

doc

script
sim
zrc_bfm

src_util

Documentation BFM

12

%] @valon_st_prm_LUuickRer.pdr
axi_bfm_QuickRef.pdf
axilite_bfm_QuickRef.pdf

axistrearn_bfrm_CuickRef.pdf]

gmii_bfm_QuickRef pdf
gpic_bfrm_QuickRef pdf
i2c_bfm_QuickRef.pdf

@ internal_uvvrn_guide.docx

|TCI LTI ST T PP I e

UVVM: UVM for VHDL designers - An introduction

~

_

Similar docs for all BFMs

~

J

£ EmLogic

Documentation BFM

AXl4-Stream BFM — Quick Reference

- Syntax + Overloads
- Examples
- Explanations

AXI4-Stream Master (see page 2 for AXI4-Stream Slave)

axistream_transmit[_bytes] (data_array,

BFM Configuration record ‘t_axistream_bfm_config’

Example (tdata’length = 16) : axistream_transmit ((x"D0" Record element Type C_AXISTREAM_BFM_CONFIG_DEFAULT
Example (tdata’length = 8) : axistream_transmit ((x"D0" max_wait_cycles integer 100
Example: axistream_transmit(v_data_array(0 to v_numByt max_wait_cycles_severity t_alert_level ERROR
Sample: auseam_tansmily_dsla a0 0\ BN clock period time 1 ns [Defaults are fine...]
Example: axistream_transmit(v_data_array(0 to v_numByt clock_period_margin time Ons
Note! Use axistream_transmit_bytes () when using t{_byte_ CIOCk—margm—seventy t._alert_level TB_ERROR
setup_time time -1 ns |
hold_time time -1 ns
bfm_sync t_bfm_sync SYNC_ON_CLOCK_ONLY
(. . \ match_strictness t_match_strictness MATCH_EXACT
CO n ﬁ g u rat' on byte_endianness t_byte_endianness FIRST_BYTE_LEFT
- PrOtOCOI BehaViOU r valid_low_at_word_num integer 0
) . valid_low_multiple_random_prob real 05
- Com pllance checki ng valid_low_duration integer 0
. . valid_low_max_random_duration integer 5
\ S Imu Iatl on Set u p check_packet_length boolean false
protocol_error_severity t_alert_level ERROR
ready_low_at_word_num integer 0
ready_low_multiple_random_prob real 05
ready_low_duration integer 0
ready_low_max_random_duration integer 5
ready_default_value std_logic o
id_for_bfm t_msg_id ID_BFM

13

UVVM: UVM for VHDL designers - An introduction

£ EmLogic

Compiling UVVM Light

(

UVVM_Light-rnaster] sim
demo_th src_bfm
doc sre_util
. =| CHAMGES.TXT

script

) | LICEMSE
#m [# Manifest.py
sre_bfm (¥ READMEmd)
src_util

h

26

VWM _Light-rmaster
demo_th
doc

script

sim]

src_bfm

src_util

14

v |=| VERSION.TXT
E.g. compiling from the /sim folder inside the UVWM Light install directory:

[uvvm_light -directory]: [target-directory

%] @valon_st_brm_LuIckRer.pdr
axi_bfm_QuickRef.pdf
axilite_bfm_QuickRef.pdf
axistream_bfm_CuickRef.pdf
gmii_bfm_QuickRef pdf

- - :] ; H]
apio_bfm. QuickRef pdf vsim -c -do "do ../script/compile.do ../ .
i2c_bfm_QuickRef.pdf

@ internal_uwvrn_guide.docx

(K1 venimii Lfinn Pl sim oD af e dE

UVVM: UVM for VHDL designers - An introduction £ Em Logl C

BFM procedures are not sufficient

BFM: Defined here as a procedure only

BFMs are great for simple testbenches

p_main (test-sequencer)]
- Dedicated procedures in a simple package

- Just reference and call from a process

BUT

- A process can only do one thing at a time
Either execute that BFM
- Or execute another BFM

- Or do something else

To do more than one thing: sbi_write(C_TX, x"B3")
- Need an entity (or component)

(VC = Verification Component) uart_expect(x"B3")

VVC: VHDL Verification Component (UVVM VC with extended functionality)

15 UVVM: UVM for VHDL designers - An introduction £ Em Logl C

VVC: VHDL Verification Component

4)

Interpreter

- Is command for me?
- Is it to be queued?

- If not:
Case on what to do

/

SBI_VVC

A

Command

y

-

Executor

- Fetch from queue
- Case on what to do

- Call relevant BFM(s)
& Execute transaction

Queue

Testcase

Sequencer

N

~

/

SBI_VVC

]

16 UVVM: UVM for VHDL designers - An introduction

A EmLogic

BFM to VVC: How?

. 3
I

b

[p_main (test-sequencer)] [p_main (test-sequencer)]

S — Y
[m———————————————y

RT

sbi_write(C_TX, x"B3")

sbi_write(SBI_VVCT,1, C_TX, x"B3")
——— 3
uart_expect(UART_VVCT, 1, RX, x"B3") uart_expect(x"B3")

[UVVM VVCs also include: B

Delay-insertion, command queuing, completion detection, activity registration,
multicast & broadcast, termination, set-up, data fetch, multi-channel support,
\interface checkers, scoreboards, transaction info, local sequencers, etc ...)

17 UVVM: UVM for VHDL designers - An introduction A Em Logl C

AXI-stream - VVC based TB (1)

VVC based Testbench

p_main
(test-sequencer)

=

axis..._tx(target, data, .
axis..._rx(target, data, .

)i
)]

4

B T T T T T T e —"

VVC based Test harness

Clock-Gen

» DUT
VVC
AXI4- AXIS || HEo | AXIS
Stream » slave master
Master VVC

AXI4-
Stream
Slave VVC

axistream_transmit(target, data, ...);
axistream_expect(target, data, ...);

~ clock_generator

axis..._rx(data, ...);

BFM based Testbench

S p_main
(test-sequencer) DUT
;'i-;(is..._tx(data,)} AXIS

slave

Y

FIFO

AXIS
master

4

18

UVVM: UVM for VHDL designers - An introduction

£ EmLogic

AXI-stream - VVC based TB (2)

VVC based Testbench VVC based Test harness

p_main

(test-sequencer) CIO\CII:;SE" » DUT
;3->.<is..._tx(target, data, ..); AXIA- AXIS AXIS AXI4-
axis..._rx(target, data, ...); stream |—»| slave " FIFO _’master -
Master VVC Slave VVC
UVVM (from github) = Full UVVM (all functionality)
uvvm util (library) = Dedicated library per VVC
log, check_value, await value, etc.. °

For simpler reuse

bitvis vip clock generator (library) = All VIP-related functionality
lock t : : . :
clock_generator vve (VWC) in dedicated VIP directories

start_clock, ... (procedures / methods)

clock generator vvct (global signal) m Scrlpt tO COmp”e a” UVVM
bitvis vip axistream (library) * Compile all, but

axistream vvc (VVC) Just include what you need
axistream transmit, ... (procedures / Mectroo=—

axistream vvet (global signal) [_Generic to select Master or Slave

19 UVVM: UVM for VHDL designers - An introduction £ Em Logl C

Resulting transcript +Debug

Note the changing scope

axistream transmit (AXISTREAM VVCT,0, v_data array, msg);

| ID_UVVM_SEND CMD 50.0 ns | TB seq.|(uvvm)
->axistream transmit (AXISTREAM VVC,0, 512 bytes): 'TX 512B'

. ID_PACKET DATA 24202.0 ns AXISTREAM VVC,0 i
axistream transmit(512B)=> Tx x"ED", byte# 493. 'TX 512B'

ID PACKET COMPLETE 24346.0 ns |AXISTREAM VVC,O0

| axistream transmit(512B)=> Tx DONE. 'TX 512B' ;

ID UVVM SEND CMD 50.0 ns TB seq. (uvvm)
->axistream expect bytes (AXISTREAM VVC,1, 512b): 'Expecting 512b'

- Plus similar additional verbosity as for Transmit
- Plus for both: Debug-messages when command reaches Interpreter and Executor

20 UVVM: UVM for VHDL designers - An introduction £ Em Logl C

v

VY IM-rmaster

_supplementary_doc
bitvis_irgc

bitvis_uart
bitvis_vip_avalon_mm
bitvis_vip_avalon_st
bitvis_vip_axi

bitvis_vip_axilite

bitvis_vip_axistream

doc

script

A
bitvis_vip_clock_generator
bitvis_vip_error_injection
bitvis_vip_ethernet
bitvis_vip_gmii
bitvis_vip_gpio
bitvis_vip_hwve_to_wve_bridge
bitvis_vip_i2c
bitvis_vip_rgmii
bitvis_vip_shi
bitvis_vip_scoreboard
bitvis_vip_spec_cov
bitvis_vip_spi
bitvis_vip_uart

bitvis_vip_wishbone

Documentation VVC

Mawvn

[

axistream_bfm_CuickRef.pdf

axistreamn_wwec_OuickRef.pdf

] ¢

Similar docs for all
BFMs, VVCs,
UVVM and other VIP

"VHDL designers - An introduction

£ EmLogic

Documentation VVC

1 VVC procedure details

Procedure
axlIstream_transmitl_bytesl()

3 VVC Configuration

Record element
inter_bim_delay

Description

axistream_transmitl_bytes] (VWCT, vvc_instance_idx, data_array, [user_array, [strb_array, id_array, dest_arrayll, msg, [scopel)

The axistream_transmit() VWC procedure adds a transmit command to the AX14-Stream VWC exel = Sy ntax + Ove rI Oa d S

commands have completed. When the command is scheduled o run, the executor calls the AX14-

the AXI4-Stream BFM QuickRef.

The axistream_transmit() procedure can only be called when the AXISTREAM VW C is instantiatec

‘GC_MASTER_MODE' to true.

Examples:

Type
t_inter_bfm_delay

- BFM Config as for BFM
- Additional VVC setup

C_AXISTREAM_BFM_CONFIG_DEFAULT
C_AXISTREAM_INTER_BFM_DELAY_DEFAULT

Defaults are fine...

- Examples
- Explanations

Description
Delay between any requested BFM accesses fowards the DUT.
- TIME_START2START: Time from a BFM start to the next BFM start
(A TB_WARMNING will be issued if access
takes longer than TIME_STARTZSTART).
- TIME_FINISHZSTART: Time from a BFM end to the next BFM start.
Any insert_delay() command will add to the above minimum delays, giving for instance
the ability to skew the BFM starting time.

cmd_queue_count_max natural C_CMD_QUEUE_COUNT_MAX Maximum pending number in command queue before queue is full. Adding additional
commands will result in an ERROR.

cmd_queue_count_threshold natural C_CMD_QUEUE_COUNT_THRESHOLD An alert with severity “cmd_queue_count_threshold_severity” will be issued if command
queue exceeds this count. Used for early waming if command queue is almost full. Will
be ignored if set to 0.

cmd_queue_count_threshold_severity i_aleri_level C_CMD_QUEUE_COUNT_THRESHOLD_SEVERITY Severity of alert to be initiated if exceeding cmd_gueue_count_threshold

result_gueue_count_max natural C_RESULT_QUEUE_COUNT_MAX Maximum number of unfetched results before result_queue is full.

result _queue_count_threshold natural C_RESULT_QUEUE_COUNT_THRESHOLD An alert with severity ‘resuli_gueue_count_threshold_severity’ will be issued if result
queue exceeds this count. Used for early waming if result queue is almost full. Will be
ignored if set o 0.

result _queue_couni_threshold_severity i_aleri_level C_RESULT_QUEUE_COUNT_THRESHOLD_SEVERITY Severity of alert to be initiated if exceeding result_gueue_count_threshold

"“bim_config

t_axistream_bfm_config C_AXISTREAM_BFM_CONFIG_DEFAULT

Configuration for AX14-Stream BFM. See quick reference for AXI4-Stream BFM

msg_id_panel

t_msg_id_panel

C_\WC_MSG_ID_PANEL_DEFAULT

WVC dedicated message 1D panel. See section 16 of
uwvvm_vve_framework/doc/UVVM_VVC_Framework_Essential_Mechanisms_pdf for how
to use verbosity conirol.

The configuration record can be accessed from the Central Testbench Sequencer through the shared variable array, e g.:

50

shared axistream wvvc config(l).inter bfm delay.delay in time := 50 ns;

shared axistream vvc_config(l) .bim config.clock period

10 ns;

Compiling UVVM

[i UVVM-master bitvis_vip_gpio
_supplementary_doc bitvis_vip_hwve_to_wve_bridge
bitvis_irgc bitvis_vip_idc
bitvis_uart bitvis_vip_rgmii
o bitvis_vip_shi
bitvis_vip_avalon_mm T
o bitvis_vip_scoreboard
bitvis_vip_avalon_st bitvis_vip_spec_cov
bitvis_vip_axi bitvis_vip_spi
bitvis_vip_axilite bitvis_vip_uart
N . N . . " . n
bitvis_vip_axistream bitvis vip_wishbone \Scr|pt> vsim -C _do Compl|e a”do
bitvis_vip_clock_generator script
bitvis_vip_error_injection uwvm_util
o wwwm_wwe_framewaork
bitvis_vip_ethernet
o) =| CHAMNGES.TAT
bitvis_vip_gmii | FAQ bt
bitvis_vip_gpio » GETTING_STARTED.md
bitvis_vip_hvwogte o bridne = E P C
bitvis vip i2 [The easiest way to complle the complete UWM with everything (Utility Library,
itvis_vip_i2c

WC Framework, BFMS, VW(s, etc.)} is to go to the top-level script directory and

run 'compile all.do' inside Modelsim/Questasim/RivieraPro/ActiveHDL.

23 UVVM: UVM for VHDL designers - An introduction £ Em LogiC

VVC: Easy to extend

- Easy to add local sequencers
- Easy to add checkers/monitors/etc

Interpreter *_VVC Executor
- Is command for me? - Fetch from queue
- Is it to be queued? — <——>| - Case on what to do
Command
- If not: Queue - Call relevant BFM(s)
Case on what to do & Execute transaction

Bit-rate checker
Frame-rate checker

Gap checker

24 UVVM: UVM for VHDL designers - An introduction £ Em LogiC

VVC: Easy to extend

- Easy to handle split transactions
- Easy to handle out of order execution

Interpreter *_VVC Executor
- Is command for me? - Fetch from queue
- Is it to be queued? — <«——— - Case on what to do
Command
- If not: Queue - Call relevant BFM(§)
Case on what to do & Execute transaction
Bit-rate checker Queue
Frame-rate checker I
Response-Executor
Gap checker

25 UVVM: UVM for VHDL designers - An introduction £ Em LogiC

VVC Advantages

Simultaneous activity on multiple interfaces
Encapsulated - Reuse at all levels

Queue —-> May initiate multiple high level commands
Local Sequencers for predefined higher level commands

Only in UVVM VVC(s:
* UNIQUE: Control all VVCs from a single sequencer!

°* May insert delay between commands - from sequencer
- The only system to target cycle related corner cases

* Simple handling of split transactions and out of order protocols
* Common commands to control VVC behaviour

* Simple synchronization of interface actions — from sequencer

®* May use Broadcast and Multicast

Better Overview, Maintenance, Extensibility and Reuse

26 UVVM: UVM for VHDL designers - An introduction £ Em LogiC

Keeping the overview

- May use any number of VVCs

- May use any number of instances of each VVC type

- May control them all simultaneously — and also control command delays
- May control all from a single test sequencer (or two — or more)

- Get total overview by looking at one file of sequential commands only

FPGA
VVC | PIF uart | VVC
vVvC | SPI DMA|| P2 | VVC
Test vve | P3 intr || P1 | VVC
SE(. :| ctrl
VVC |ETH ETH | VVC
27 UVVM: UVM for VHDL designers - An introduction

£ EmLogic

Lot’s of free UVVM BFMs and VVCs

28

AXI4-lite

AXI4 Full

AXI-Stream Transmit and Receive
UART Transmit and Receive

SBI

SPI Transmit and Receive

I2C Transmit and Receive

GPIO

Avalon MM

Avalon Stream Transmit and Receive
RGMII Transmit and Receive
GMII Transmit and Receive
Ethernet Transmit and Receive
Wishbone

Clock Generator

Error Injector

UVVM: UVM for VHDL designers - An introduction

All:

- Free

- Open Source

- Well documented

- Example Testbenches

The largest collection
of
VHDL Interface Models

VVC: VHDL Verif. Comps.
- Includes the corresponding BFM
Allows:

- Simultaneous interface handling
- Synchronization of interfaces

- Skewing between interfaces

- Additional protocol checkers

- Local sequencers

- Activity detection

- Simple reuse between projects

£ EmLogic

Added 2019-20 - in cooperation with ESA

= ESA Extensions in ESA-UVVM-1
* Scoreboards
®* Monitors
* Controlling randomisation and functional coverage
* Errorinjection (Brute force and Protocol aware)
* Local sequencers
* Controlling property checkers
* Watchdog (Simple and Activity based)
°* Transaction info
* Hierarchical VVCs - And Scoreboards for these
* Specification Coverage (Requirement/test coverage)

e ESA is helping VHDL designers speed up
= esa FPGA and ASIC development and
improve their product quality!

=

s

I

=

—
Vi=

y

29 UVVM: UVM for VHDL designers - An introduction £ Em Logl C

=
=
"7

ﬁ

f--

Transaction info transfer ¢=@Sa

/

DUT model :""""'~

<,
N
) R SBI_SB
s |
Seq. — = =% UART_VVC » UART [« » SBI SBI_VVC
= - Some func. [© VVC?
Transaction info Inside VVC All UVVM VVCs

30 UVVM: UVM for VHDL designers - An introduction £ Em Logl C

Generic Scoreboard

—

=

=
(7

e
(U
N
Q

Statistics —— Statistics

Quick Reference is provided

Compare Actual

Expected data
datas i Queue

Configuration record:

generic data type = allow_lossy

= Jogging/reporting = allow_out_of_order
= flushing queue = mismatch_alert_level
= clearing statistics = etc...

= insert, delete, fetch

= jgnore_initial_mismatch

= indexed on either entry or position

= optional source element (in addition to expected + actual)

31 UVVM: UVM for VHDL designers - An introduction

Counting:

entered
pending
matched
mismatched
dropped
deleted

initial garbage

£ EmLogic

Advanced scoreboard-based TB

VVC based Testbench VVC based Test harness

p_main
(test-sequencer)

axis..._tx(target, data, ...);
axis..._rx(target, data, ...);

/"‘
=

/‘

/%f/

—

"7

_
=
-

2esa

—

i DUT Cuu e nnnalo]AXI4- Stream
LA Model Scoreboard

* \‘/
L
I | |
n [|
Clock-Gen ", DUT -
VVC N m
i]
AXI4- AX|4-
- =2——» Stream Stream
~. Master VVC Slave VVC
<

N e e e e e e e e e e = = = = -

axistream transmit (AXISTREAM VVCT,0, v_data array, msqg);

—

e e Gl

axistream

receive (AXISTREAM VVCT,1, v_data_ array,

"Checking via SB");

32

~—

UVVM: UVM for VHDL designers - An introduction

£ EmLogic

(

/—‘_—

7=
0,
n
0

—

Watchdogs :

Simple WD Inside Util

Watchdo " Activity Watchdog.
watchdog_timer(watchdog_ctrl, timeout, [alert_level, [msg]]) y) ’Y 5
extend_watchdog(watchdog_ctrl, [time_extend]) ..’ e C RS EEn _‘I.. .
reinitialize_watchdog(watchdog_ctrl, timeout) WD ‘." “‘)"> DI el S .) 'o‘
terminate_watchdog(watchdog_ctrl) ‘.‘,“ . R .
A . ~ % | SBIL_SB
) R . EN 2
A,’ ‘. . - A 2 I
- — | UART_WC [«———» UART |« > SBI [le— SBI_VVC
Seq. r ~ -
- .| Some func. [~ ?
VVC? i Ve
—/
Apply both concurrently
Activity WD VVCs and UVVM

activity watchdog(timeout, num exp vvc);

33 UVVM: UVM for VHDL designers - An introduction

£ EmLogic

=
=
{7

/=
D
/p)
Q

s

=

ﬁ-—

Specification Coverage (1) {

= Assure that all requirements have been verified
1.Specify all requirements

Requirement Label Description

MOTOR_R1 The acceleration shall be ***

MOTOR_R2 The top speed shall be given by ***
MOTOR_R3 The deceleration shall be ***
MOTOR_R4 The final position shall be ***

2 .Report coverage from test sequencer (or other TB parts)
3.Generate summary report

= Solutions exist to report that a testcase finished successfully
°* BUT - reporting that a testcase has finished is not sufficient

34 UVVM: UVM for VHDL designers - An introduction £ Em Logl C

—

=
=
(7

i
@
2
0

Specification Coverage (2)

Requirement Label Description

MOTOR_R1 The acceleration shall be ***
MOTOR_R2 The top speed shall be given by ***

MOTOR_R3 The deceleration shall be ***
MOTOR_R4 The final position shall be ***

= What if multiple requirements are
covered by the same testcase?

* E.g. Moving/turning something to a to a given position
R1: Acceleration R2: Speed R3: Deceleration 4: Position etc..

TC10=—@R1

= Generates various types of reports
®* Coverage per requirement
* Test cases covering each requirement
* Requirements covered by each Test case

= Accumulated over multiple Test cases

35 UVVM: UVM for VHDL designers - An introduction £ Em Logl C

The new stuff — October 2021

= Enhanced Randomisation
* Advanced randomisation in a simple way

= Optimised Randomisation
* Randomisation without replacement
* Weighted according to target distribution AND previous events
- the lowest number of randomisations for a given target

= Functional Coverage

* Based on functional coverage in SV
+ But in VHDL, and without all the complexity of SV and UVM

* Fully integrated with UVVM, but may be used stand-alone

36 UVVM: UVM for VHDL designers - An introduction £ Em LogiC

—

(™

UVVM Enhanced Randomisation i&%esa

7

Z=

Quality & Efficiency enablers

= Well integrated with UVVM Structure & Architecture
* Alert handling and logging in particular

= Strong focus on Overview & Readability
* Adding keywords to ease understanding

= Easy to Maintain and Extend

Simplicity

Overview, Readability

Modifiability, Maintainability, Extensibility

Debuggability

Reusability

Typing code consumes is an insignificant part of the development time.

Reading and understanding code is repeated over and over again, and
is thus a significant part of the development time

addr <= my addr.rand (0, 18@@30,31) Gx@(v));

= Investing in better code yields a huge return on investment

37 UVVM: UVM for VHDL designers - An introduction £ Em LogiC

Single Method approach

= "Standard" approach: Randomisation in one single command
* Simple randomisation is always easy to understand

addr <= my addr.rand(0, 18);

®* More complex randomisation is normally more difficult to understand
BUT - there are ways to significantly improve this

addr <= my addr.rand(O, 18(:%3%%)(7));

addr <= my_addr.rand(0, 18(ADD,}30,31));

addr <= my_addr.rand (0, 18/ ADD,}30,31) { EXCL) (7))

* Similar readability focus for weighting

addr <= my_addr.randgggz;weight (0,2),(1,3),(2,5));

addr <= my_addr.rand_rane_weight (0,18,4),(19,31,1)) ;

38 UVVM: UVM for VHDL designers - An introduction £ Em LogiC

Multi-method approach (1)

= Extends the functionality of the single method approach

* Single method approach:

addr 1 <= my addr.rand(0, 18, ADD, (30,31), EXCL, (7))
addr 2 <= my addr.rand(0, 18, ADD, (30,31), EXCL, (7))

* Multi-method - equivalent

my addr.add range (0, 18);

my addr.add val((30,31));

my addr.excl val((7));

addr 1 <= my addr.randm(VOID) ;
addr 2 <= my addr.randm(VOID) ;

Note: randm()
(For clarity
and to avoid any ambiguity)

* Allows adding more ranges, sets or exclusions

my addr.add range (48,63) ;
my addr.add range (80,127) ;

* Allows simple inclusion of future extensions

39 UVVM: UVM for VHDL designers - An introduction £ Em LogiC

Functional Coverage
— Typical Sequence

—

=

=
(7

e
(U
N
Q

Define a variable of type t_coverpoint

variable cp payload size : t_coverpoint;

Add the bins

cp_payload size

cp_payload size

.add bins (bin(0));
cp_payload size.
cp_payload size.
.add bins (bin(255,256,2)) ;

o] ’ 1 ’ 2-254 ‘ 255 |256 ’

add bins (bin(1l));
add bins (bin_ range(2,254,1));

Tick off bins as their corresponding payload size is used

cp_payload size.sample coverage (payload size) ;

Continue sending packets until coverage target is reached

while not cp payload size.coverage completed (VOID) ;

UVVM also has transition coverage

40

UVVM: UVM for VHDL designers - An introduction £ Em LogiC

Some reports — out of many

I T O T O O O O S

HITS MIN HITS HIT COWERAGE MAME ILLEGAL/ IGNORE
1 M/ & WA illegal addr ILLEGAL
2] 75.80% mem_addr_low -
1 188.80% mem_addr_mid -
14 4q 189 .0e% mem_addr_high -
2
2

(256 to 511)
(@ to 125)
(126, 127, 128)
{129 to 255)
(A-»1-»2-»3)
transition_2

a.ea% transition_1 -
188.80% transition_2 -

Hits: 76.008%

COVERAGE(BINS|HITS) GOAL(BINS|HITS) % OF GOAL(BINS|HITS)
5 60.80% | 76.47% Se% | 1eex 190.90% | 76.47%
3 188.88% | 108.09% 108% | 190% 186.98% | 108.38%
6 180.80% | 1280.80% 100% | 1leax 108.20% | 108.08%
4 g.00% | @.900% 108% | 196% 0.08% |

1 9.80% | 9.80% 108% | 190% @.98% | ©.90%
4 180.80% | 1280.80% 100% | 1leax 108.20% |

3 2.00% | @.00% 100% | 1098% 2.00% |

12 180.80% | 1280.80% 100% | 1leax 108.20% |

B e L e o T T S F F o R

41 UVVM: UVM for VHDL designers - An introduction A Em Logl C

Pick and choose - No lock

= Pick any Utility Library functionality: (from these plus more)

log() alert () error () manual_ check ()
check value () check stable() await stable()
await change() await value() check value in range()
random () randomize () report *** () enable log msg()
justify () fill string() to_upper () replace ()
clock_generator () await unblock flag() await barrier ()

= Pick any BFM - or any VVC - or any combination

AXTI4-1lite GPIO SBI SPI UART I2C
AXT AVAILON MM AXI4-stream Avalon-stream
CLOCK_GENERATOR GMII RGMII Ethernet

= Pick any FIFO, Queue, Scoreboard
= Pick any Advanced Randomisation and/or Functional Coverage
= Pick Specification coverage / Requirements tracking

42 UVVM: UVM for VHDL designers - An introduction £ Em Logl C

Standardized? - In what way?

VVC based Testbench ' VVC based Test harness

. DUT IAX14- Stream
““““ Model [*rrrreneh Scoreboard
o* A
- N L
AN Clock-Gen |a .
. - *,| DUT .
(test-sequencer) e E
axis..._tx(target, data, ...); AXIG- * AXIS AXIS AXI4
axis..._rx(target, data, ..); | o stream . — T s S
Master VVC [Slave VVC

- Standard Interface

- Standard Protocol

- Standard common commands

- Standard Status interface

- Standard Config interface

- Standard handling of multiple VVCs

- Standard VVC synchronization
kStandard multicast/broadcast

)

Interpreter *_VvC Executor
- Is command for me? - Fetch from queue
- Is it to be queued? — +—= - Case on what to do
a Command _.I
- If not: Queue - Call relevant BFM(s)
Case on what to do & Execute transaction
Bit-rate checker Queue

Frame-rate checker

Gap checker

\

Response-Executor
- Standard VVC internal \
architecture
- Standard VVC control of checkers
- Standard queuing system
- Standard handling of
multi-threaded interfaces

\— Standard debug support

)

Simplification

VVCs from different users will work together

Users know how VVCs behave and how any test harness will work

43

UVVM: UVM for VHDL designers - An introduction

£ EmLogic

UVVM vs UVM

UVVM: VHDL (2008) vs UVM: SystemVerilog
UVVM: Component oriented vs UVM: Object oriented
Block diagrams are similar, but different naming and structure

UVM is far more comprehensive and complex than UVVM
* But UVVM is sufficient for almost all testbenches

UVVM user threshold is a fraction of the UVM threshold - for VHDL users
°* UVVM is just a step-by-step evolution on VHDL

UVVM allows a gentle introduction to modern verification
* May be used as a first step to UVM - for those who evaluate that
* Is however sufficient in itself for almost all FPGA designs

UVVM can run on any VHDL 2008 compatible simulator

44 UVVM: UVM for VHDL designers - An introduction £ Em LogiC

Courses

= FPGA (and ASIC) Verification:
'Advanced VHDL Verification — Made simple’

= FPGA (and ASIC) Design:
'Accellerating FPGA and Digital ASIC Design'

Design Verification

- Design Architecture & Structure - Verification Architecture & Structure

- Clock Domain Crossing - Self checking testbenches

- Coding and General Digital Design - BFMs — How to use and make

- Reuse and Design for Reuse - Checking values, time aspects, etc

- Timing Closure - Verification components

- Quality Assurance - at the right level - Advanced Verif: Scoreboard, Models, etc
- Faster and safer design - State-of-the-art verification methodology

Next courses in Germany October and November.
More courses on demand: On-site, Online, Public, or Hybrid

https://emlogic.no/courses/

45 UVVM: UVM for VHDL designers - An introduction £ Em LogiC

https://emlogic.no/courses/

UVVM in a nutshell

= Huge improvement potential for more structured FPGA verification

Structure & Architecture Simplicity

UVVM (incl. all) is Open Source

Overview, Readability

Game changer for efficiency & quality

Modifiability, Maintainability, Extensibility

Debuggability

UVVM has the largest collection of

Reusability

interface models (as BFMs and VVCs)
Le

g¢-esa IEEE SA OPEN
Menior ALDEC) [EISIEN

UVVM may save 200-2000 hours
on a medium complex project

And at the same time improve
TTM, MTBF & LCC

Usage is exploding

- World-wide number 1 for VHDL
- Fastest growing — of all

46 UVVM: UVM for VHDL designers - An introduction

£ EmLogic

