
Formal Verification for

SystemC/C++ Designs
DVClub

September 2021

Vlada Kalinic, OneSpin: A Siemens Business

Agenda

• Introductions

•Overview of HLS usage,

current challenges,

opportunities

•OneSpin – SystemC DV

Inspect and Verify Overview

•Q&A

IC Integrity

Functionally Correct, Safe, Secure, and Trusted SoCs/ASICs/FPGAs

Design Integration Implementation

IC Integrity

SoC/ASIC/FPGA Verification Flow

OneSpin: A Siemens

Business provides

certified IC Integrity

Verification Solutions

to develop functionally

correct, safe, secure,

and trusted integrated

circuits.

Functional

Correctness
Safety

Trust and

Security

Leading-Edge Formal Technology

Targeting Critical Hardware Verification Challenges

Functional Correctness
Rigorous coverage-driven functional

verification from block to chip,

leveraging formal technology

Safety
Safety analysis and higher diagnostic

coverage to meet strict certification

requirements

Trust and Security
Automated detection of RTL Trojans

and hardware vulnerabilities to

adversary attacks

Design Exploration

Protocol Violations

Integrate Formal/Sim Coverage

End-to-End User Assertions

HLS/SystemC Verification

Synthesis/P&R Errors

FMEDA of Complex SoCs

Failure Mode Distribution

Avoid Excessive Fault Simulations

Measure Diagnostic Coverage

ISO 26262 Compliance

Tool Qualification

Denial of Service

Data Leakage

Privileges Escalation

Data Integrity/Confidentiality

Hardware Backdoors

Hardware Trojans

OneSpin 360® Formal Platform

Heterogeneous Computing

OneSpin Solutions and Services

Thorough verification of

complex SoC platforms

used for 5G wireless, IoT,

and AI applications

Automotive and Industrial

Systematic bug elimination

and metrics on proper

handling of random errors in

the field

RISC-V

Efficient and complete

verification, including

custom extensions.

Compliance to ISA.

RISC-V

SystemC with HLS Typical Issues

Using SystemC for HLS Modeling creates new problems and

opportunities

• Algorithm implementation issues in SystemC

• SystemC language related code problems

• Functional Consistency Checking of SystemC vs. RTL

Imposing Hardware Constraints on C++

Floating Point
Algorithmic

Design

Fixed Point
Implementation

in C++

SystemC
HLS Model

Synthesized
RTL Model

HLS Design Flow

Algorithm Design Functional Comparison Code Analysis

The Standards Do Not Help

IEEE 1666 SystemC Standard

• 25+ occurrences of “unspecified“

• 50+ occurrences of “undefined“

• 150+ occurrences of “implementation defined“

Accellera Synthesizable Subset

• ~20 occurrences of “undefined“, “unspecified”,

“implementation defined“

C++ not built for hardware descriptions

OneSpin: Advanced Verification for HLS

Challenges

• Limited useful feedback from HLS for coding style

• Certain coding mistakes can cause simulation mismatches that are

extremely difficult to debug

• Optimization loop is long and somewhat ad-hoc

• Garbage in, garbage out

HLS

Coding

High Level

Synthesis
High Level

Synthesis

RTL

Verification

D
e
b
u
g
 &

 O
p
ti
m

iz
e

Algorithmic

Modeling

Current HLS Flow

OneSpin: Advanced Verification for HLS

Opportunities to improve design flow

HLS

Coding

High Level

Synthesis
High Level

Synthesis

RTL

Verification

D
e
b
u
g
 &

 O
p
ti
m

iz
e

HLS

Coding

High Level

Synthesis
High Level

Synthesis

RTL

Verification

D
e
b
u
g
 &

 O
p
ti
m

iz
e

OneSpin 360

DV Verification
Formal

Autochecks

Automated Apps

SVA / Assertions

• Clearer messages & direction to improve

code

• Faster runtime and iteration loop

• Formal checking – not simple linting

• Better SystemC verification

Algorithmic

Modeling

Algorithmic

Modeling

�

Adding

OneSpin

Current HLS Flow Improved HLS Flow

Deploying the OneSpin Products

DV-Inspect

• Structural Analysis

• Linting

• Initialization & Reset

• Overflow and Array OOB

• Activation & Reachability

• Arithmetic Precision

• Race Conditions

DV-Inspect & DV-Verify for SystemC & RTL

DV-Verify Apps

• Design Exploration

• UMR & X-Propagation

• Protocol Verification IP

• Scoreboard

UMR = Uninitialized Memory Read

DV-Verify Formal ABV

• SV-Assertions, C-Assert

• Cover Points

• Observation Coverage

Automatic Formal Analysis

Tool Guided Verification

Assertion Based Verification

Easy Adoption & Increasing Value

OneSpin 360 DV High-Level Verification

Values

• Eliminate design bugs before HLS synthesis

• Start verification much earlier in the process

• Reduce simulation effort in SystemC and RTL

• Optimize HLS input code before synthesis

Design Verification Solution for C++/SystemC HLS Code

SystemC Inspect Automated Checks

Tab Autocheck SystemC Explanation

Init init X Initialization checks are created for each non-redundant state signal

and primary output of the current unit. An initialization check tests

whether the corresponding signal is set to a uniquely determined
value when applying the reset sequence of the unit.

ModelBuilding

array_index

X An array index violation occurs if an array is accessed using an index

which exceeds the array bounds. Array index checks check for static

and dynamic violations in all array accesses occurring in the HDL
source code.

ModelBuilding

div_zero

X Division-By-Zero checks are generated for all arithmetic divisions

occurring in Verilog. SystemC and VHDL source code, checking

whether or not the divisor is always different from zero. These checks

are also generated in Verilog and SystemC for modulo operations

with a zero base and for pow operations on zero with a negative
exponent.

ModelBuilding

no_return

X Function-Without-Return checks test whether each possible control
path through a function ends with a return statement.

General

shift_negative

2020.1 Checks whether a shift with a negative direction occurs. Cannot occur

in SystemVerilog, since there shift counts are always treated as
unsigned integers.

ModelBuilding

signal_domain

X Signal domain checks investigate whether state bits of the unit can
take a value other than zero or one, e.g. 'X' or 'Z'.

ModelBuilding

write_write

X In Verilog and SystemC designs, it is possible that write-write races

occur among different processes. In VHDL, a write-write race check is
generated if a racing condition for a shared variable may occur.

ModelBuilding

read_write

2020.1 In Verilog and SystemC designs, it is possible that read-write races

occur among different processes if blocking assignments are used. In

VHDL, a read-write race check is generated if a racing condition for a
shared variable may occur.

Tab Autocheck SystemC Explanation

General fixed_overflow X Checks for overflows in fixed_float implementations in VHDL and
SystemC.

General Integer X Integer checks are created for each signed or unsigned integer signal

of the current unit. An integer check tests whether there are
redundant bits in the signal.

General shift

2020.1 A signal can be accidentally set to zero by logically shifting its value

too many times in the same direction. For each shift operation

occurring in the source code, a shift check is created, checking
whether or not such unintended behavior may occur.

General truncation

X If the result of an integral operation is used in a context, that does not

match the self-determined size or signedness of the operation, then
relevant bits may be lost.

Dead Code

dead_code

X A line of code is called dead code if it is not visited in any execution

trace. Lines can be unreachable, for example, if the condition of an

enclosing control structure never becomes true, thus always
preventing it from being executed.

Stick stick X Stick checks test the unit for constant bits in signals.

Assertion
Checks

x_checking_setup

x_checking

X X-Propagation Analysis app provides a robust and effective circuit

analysis that highlights all the issues in a design that could lead to X
state propagations without reliance on simulation test stimulus.

Design Exploration

Design browser

Full debugger

Handling SystemC Initialization

Unpredictable reset states

X

X

X

X

X

X

X

X

X

reset

0

1

X

0

0

X

1

1

X

Logic

1

0

0

1

1

X

0

0

X

Automatic variable initialization in SystemC

(due to C++ mother language)

• All “sc_” datatypes automatically initialized

to default value

However, synthesizable subset standard

states:

• Module constructor initializations ignored

• Reason: Reset behavior under user‟s

control

Inevitable Sim/Synth mismatches hard to

debug using simulation

OneSpin 360 DV SystemC

 Checks which registers are initialized

 Check (intentionally) undefined reg effect

 Switch between sim & synth semantics

Initialization Checks

Undefined Value Propagation

Are all registers initialized?

• Uninitialized registers sources of X instability

Other sources of X

• Undefined operations

• Multiple drivers

If Xs occur, will this have a bad effect?

Solutions?
• SystemC Simulator has no notion of undefined

values or RTL semantics

• Formal can exhaustively analyze all conditions under

which an X can propagate

x x x x

1

0

OneSpin 360 DV SystemC

 Handles all sources of Xs

 Automated App to track X propagation

 Manual assertions (if Xs are allowed

temporarily)

No X-State in SystemC

Undefined Operations

Example Array Out-Of-Bounds Access

OneSpin 360 DV-Inspect

 Exhaustive analysis

 Precise error location

 Easy debug

• Simulation

• Array address maybe larger than number of
elements but no range checking

• Undefined behavior with diverse effects

• C++ checking tools slow and cumbersome

• Trivial bugs are hard to find and debug

sc_uint<8> mem[8][16];

：
if(x>=16) { x = 15 };

if(y>=8) { y = 7 };

mem[x][y] = ...;

• Simulation does not complain and runs fine!

• DV-Inspect reports range violation error.

sc_signal<sc_uint<10> > intArr[10];

 :

int b = (large ? 10 : 5);

for(int i = 0; i <= b; ++i)

 intArr[i].write(0);

• Simulation does not complain but may crash if b = 10!

• DV-Inspect reports range violation error with b = 10 if ‚large„

is possible.

Array Out of Bounds

SystemC Race Conditions

• SystemC simulation is sequential

• Standard forces simulators to execute

threads sequentially

• No HDL-style “non-blocking” assignment

• Hardware is concurrent

• RTL processes work in parallel

• Synthesis result is parallel

• HLS requires careful management of

concurrent access to shared memories

Simulation vs. Synthesis Mismatch

OneSpin 360 DV SystemC

 Implements synthesis semantics

 Detects data races reliably

Memory

Thread 1 Thread 2

How does the designer guarantee no conflict?

Fixed Point Precision App

OneSpin

Fixed Point

Formal

Checks
List of signals with

redundant bits

Simulation trace

showing overflow

SystemC

Block

Check for overflow

• Check all operations for signed/unsigned overflow

• Full automation, no need for stimulus

• Prove absence of overflows

• Show traces of overflow scenarios

Combination of 2 formal checks ensures “correct” bit widths for all arithmetic

Alternative pencil & paper method: tedious, slow, error-prone

Check for redundant bits

• Checks uppermost bits for redundancy

• Automated, no need for stimulus

• Reports fixed point signals with redundant bits

Available for sc_ standard types and HLS

IP libraries

Automated redundancy and overflow checks

Finding Redundancy and Overflow

sc_(u)int

sc_fixed

int

cynw_(u)int

Dead Code Analysis

Toggle Checks

“Stuck at” checks

Easily determines which bits are not

used

or not tested!

Other Capabilities

SystemC Property Checking Solution

Leveraging SVA on SystemC

Sequential SVA

on SystemC

SystemC in

debugging

environment

Functional

Specification

SVA

C++/SystemC

Code

Formal Tool

• Test specification elements against algorithm

• Consistent SystemVerilog assertions pre- and post-synthesis

Assertion Based Verification

Distinction between assert/assume only important for formal

Formal typically requires assumes in order to avoid unrealistic fails for asserts

Assertion classification

Type assert assume cover

Description Assertion Constraint Cover point

Purpose Monitor DUT behavior “Monitor” DUT inputs Collect coverage data

Simulation Eliminate „fail‟ from TBs Achieve „pass‟ in TBs

Formal Ensure absence of „fail‟ by

proving assertion

Assume absence of „fail‟

(never show trace where

assume fails)

Automatically find „pass‟ or

prove absence of „pass‟

OneSpin with HLS Partnership

Design Verification Solution for HLS tools

• Cooperation with HLS teams

• Support of HLS libraries and coding

• Provides independent check on HLS flow

Use formal first! Improves verification flow! Gets working RTL faster!

High-Level

Synthesis

OneSpin 360 DV

Assertion-Based

Verification

C++/SystemC

Golden Model
OneSpin 360 DV
Automated Formal

Verification

SVA &

C Asserts

OneSpin 360 DV

Assertion-Based

Verification
Verilog / VHDL

RTL Model

DV-Inspect for

SystemC/C++

Specialized

Floating Point App

DV Standard

Formal Apps

More efficient analysis and debug of

C++/SystemC model prior high-level synthesis

Re-Use of assertions and apps on RTL for consistency

OneSpin SystemC/C++ Solution

SystemC/C++ Hardware Verification

• Currently tools do not address verification challenges

• HLS driving need for pre-synthesis verification

Language and Algorithm Verification Needs

• SystemC artifacts cause problems downstream

• Algorithm verification can be accelerated with automation

OneSpin: Unique SystemC Formal Solution

• Automation to significantly improve SystemC testing

• SystemVerilog assertions for flow continuity

Enabling the HLS flow

For more information

please visit

www.onespin.com

Thank you!

