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1.0 Abstract 
 

RISC-V (pronounced “risk-five”) is an open, free ISA enabling a new era of processor innovation 

through open standard collaboration. Born in academia and research, RISC-V ISA delivers a new level 

of free, extensible software and hardware freedom on architecture, paving the way for the next 50 

years of computing design and innovation. 
 

A RISC-V microprocessor can be configured in several architectural modes depending upon the 

target market and applications.  Further, each microprocessor implementation can have different 

micro-architectural parameters depending upon performance, and power considerations. Examples 

of such micro-architectural parameters are cache sizes, the use of branch prediction, result 

forwarding, and pre-fetch to name a few. 
 

This paper outlines a hierarchical and configurable verification strategy for RISC-V based IP and 

SOCs.  A three-level (unit, core and SOC) hierarchy is proposed for test benches.  Each level of the 

hierarchical test bench is configurable for both architectural and micro-architectural parameters. At 

the heart of the verification strategy is an ISG (Instruction Stream Generator) and a UVM test bench. 

The ISG can be configured according to the RISC-V architecture and then constrained to verify micro- 

architectural features.  The generation of the specific configurable UVM test bench is automated 

based on a configuration file.  The checkers, active test bench items like injectors, and coverage 

objects, are mostly portable across the various hierarchical levels, and are configurable based on the 

configuration file. 
 

At the SOC level the tests are less ISG based and tend more towards C-based integration and use 

case tests ideally suited to the use of portable stimulus (as defined in the Accellera Portable Test and 

Stimulus Specification and supported by Questa inFact, Cadence Perspec and Breker Systems Trek). 

This allows tests to be easily ported across multiple SOCs with minimum effort, and to also be used 

in silicon validation. 
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1.0 Introduction 
 

A RISC-V based SOC can be configured into different 

implementations based on architectural or micro- 

architectural  parameters.  To  address  the  verification 

challenge this poses, a hierarchical and configurable 

verification methodology is proposed.  A three-level hierarchy 

is proposed. The lowest level of the hierarchy is the unit-level. 

Two unit-level test benches are proposed.   These are 1) 

Execution (Pipeline) Unit, and 2) Cache (L2) Unit. 
 

The Execution (Pipeline) Unit consists of the major 

pipelines components like Instruction Fetch, Instruction 

Decode, Instruction Execute, and Load Store.  Both the level 

one caches (instruction, and data) are included in this unit. The 

Cache (L2) unit consists of the second level cache. The second 

level of hierarchy is the Core Level.   At this level multiple 

Execution Units and the L2 cache are connected via a coherent 

bus. Both the unit-level test benches, and the core-level bench 

can be configured for a specific implementation.  The highest 

level of the hierarchy is the SOC which consists of the core and 

peripherals like PCIe, and MIPI. 
 

An important feature of the verification methodology is 

that a test bench at any level is configurable based on 

architectural and micro-architectural parameters.   Further, 

based on a configuration file, the test bench is automatically 

generated for the desired level and configuration. 

Subsequently,  tests  both  directed  and  automatically 

generated can be run on the test bench. 
 

The stimulus for the test benches can be instruction-based 

for ISA heavy components like the Execution Units (Pipeline), 

or transaction-based for testing the L2.    Checkers are 

reference-model based or assertion based.   Checking the 

pipeline is done using a reference model checker, and it is a 

same for the L2 where a L2 behavioral model is needed. 

Additional checking is done via assertions.  An example of an 

assertion check is that READ and WRITE are mutually exclusive. 

Additionally, loaders and injectors are part of a generated test 

bench, and generated via a configuration file. An example is a 

32KB two-way set associative cache pre- loader. 
 

In the rest of this document we cover Test Bench 

Architecture, the Stimulus, Checkers, Pre-loaders and 

Injectors, Coverage and Development Milestone, and 

Conclusion. 

 

2.0 Test Bench Architecture 
 

The hierarchical test bench architecture is show in Figure 

1. The stimulus, portable checkers, and interfaces are show in 

this figure. 

 

 

 
 

Figure 1 Hierarchical Test Bench Architecture 

 
2.1  Unit-Level Test Benches 

 

There are two test benches at the unit level, these are the 

execution unit (pipeline), and the second-level cache (L2) 
 

2.1.1    RV Execution Unit (Pipeline) Test Bench 
 

The RV Execution (Pipeline) Unit Test Bench verifies the 

single-issue, in-order pipeline. The five-stage pipeline consists 

of instruction fetch, instruction decode, execute, memory 

access, and write back.  The instruction cache and data cache 

are also part of the execution unit. A unit to handle interrupts 

from the pipeline perspective is also part of the execution unit. 
 

As the short pipeline does not have to deal with micro- 

architectural verification bottlenecks of a longer superscalar 

pipeline, it is recommended that all the components in the 

pipeline be treated and tested as one unit. 
 

Examples of such bottlenecks are register renaming, 

floating point converts for non-committed instructions, stalls 

due to load store dependencies, integer and vector register un-

naming due to branch misprediction, and reservation station  

stalls.    However,  one micro-architectural  area  that needs to 

be handled is branch prediction.   The branch predictor 

comprises a branch target buffer (BTB), a branch history table 

(BHT), and a return-address stack (RAS). 
 

The stimulus to this unit will be RISC-V instructions whose 

binary values will be loaded into a L2 behavioral model. These 

instructions could be directed hand-written tests, or tests 

output from a random Instruction Stream Generator (ISG). 

Additional inputs apart from instructions will be interrupts, and 

injected errors.  The test bench also contains pre-loaders to 

preload the caches, and branch predictor array structures. 
 

The reference-model checker for this unit will be an 

instruction-based instruction set simulator (ISS).  A trace tool 

will monitor the RTL for PC, and Register Value Updates, and 

will compare against the output of the ISS. Additionally, micro- 

architectural checkers will be added especially with respect to 

branch prediction, and exception and interrupt handling.
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2.1.2    L2 Test Bench 
 

The L2 test bench will verify the second-level cache.  Both 

its interface to the level-one (I and D) caches, and main 

memory will be verified.   The stimulus to this unit will be 

transactions including, Read, Write, Invalidate, and Refill.  The 

stimulus to this unit will come from a constrained-random 

transaction generator like a UVM sequencer.   Additional 

inputs to this unit will be injected errors to test the ECC 

mechanisms.    The test  bench also  contains pre-loaders to 

preload the caches, 
 

The reference-model checker for this unit will be a 

reference model (L2 Behavioural Model).   This model will 

model the L2 at the transaction level. The L2 state, in addition 

to transactions output will be compared against the RTL. 

Additionally, micro-architectural checkers will be added, 

especially if there are low-power features included in the 

implementations. 

 
2.2  Core Test Bench 

 

The Core-Level Test bench tests the component in the core 

complex.   These include the RISC V Execution units, the 

Coherent Bus, and the L2 Cache.  It also contains the interrupt 

units, and the debug unit.  The stimulus into the core will be 

both instruction-based, and transaction-based.  As the RISC-V 

execution units, and the L2 have been verified at the unit level, 

the focus of core-level verification will be stressing the 

interconnect fabric, and the interrupt, and debug units. 
 

The stimulus for this bench will come from the various 

ports.  RISC-V assembly stimulus generated by hand, or using 

a random instruction generator or ISG will come from the main 

memory behavioral model connected to the memory port. 

The instruction-based tests should generate traffic to the 

system port for un-cached access to high bandwidth 

peripherals. The instruction-based tests should also be able to 

generate traffic to the peripheral port for accessing peripheral 

devices.  The system port and peripheral port can be mapped 

into two different address ranges. 
 

The stimulus for the Front Port is transaction-based and 

comes in the form of requests to the ITIM, and DTIM.   In 

addition, the core-level test bench has transaction-based 

stimulus for interrupts, and debug requests. 
 

All the checkers from the unit-level are ported to the core 

level.   Additionally, at least four categories of checkers are 

added at the core-level.  These area: 1) An interface checker 

to check for bus transactions on the coherent bus, 2) A checker 

to check interrupt request, and subsequent servicing, 3) A 

checker for debug requests, and servicing, and 4) A checker for 

Port requests and servicing.    These checkers can be 

implemented as UVM style scoreboards. 
 

Checkers for arbitration and micro-architectural checkers 

will be added as needed. An example of an arbitration checker 

is to guarantee that the I/O ports get fair access and are not 

timed out.  An interrupt priority checkers checks that if two 

interrupts are pending, the higher priority one gets serviced 

first. 

2.3  SOC Test Bench 
 

The SOC test bench is the top-level bench and exercises the 

interfaces between the core complex and the peripherals like 

PCIe and MIPI.  The input into the SOC bench is based on the 

Portable Stimulus standard proposed by Accellera and 

supported by Mentor, Cadence and Breker Systems. 
 

Portable stimulus provides a specification of test intent and 

coverage at a higher-level of abstraction. Also, it provides 

graph-based randomization.   The Portable Stimulus will be 

generated for a specific implementation using the 

configuration file. 
 

All the checkers from the unit-level and core level are 

ported to the SOC level.   Additional VIP checkers from the 

PCIe, and MIPI will be integrated.  Finally, interface checkers 

will be built at the SOC level. 

 
2.4  Configurable Test Bench Generation 
 

The generation of an implementation specific test bench is 

based on a configuration file shown in Figure 2.  The fields in 

the configuration file, which are both architectural and micro- 

architectural determine the implementation specific test 

bench. The major fields in the configuration are described 

below. 

 
SOC-COMPONENTS = RVCore, PCIe, L2, MPHY; 

RVEXE-COMPONENT-ARCH = I,M,F; 

RVEXE-COMPONENT-URACH = 32I(2), 32D(2), BTB, BHT(1), RAS; 

L2-COMPONENT-UARCH = 2MB(2), ECC; 

L2-COMPONENT-POWER = 1; 

CORE-COMPONENTS = RVExe[0..3], L2, TileLink, CLINT, PLIC, Debug, 

I/O[M,F,S,P]; 

LOW-POWER = Domain(1), Clock-Gating(ON); 

 
Figure 2 Configuration File for Test Bench Generation 

 

The SOC-COMPONENTS field lists all the components of the 

implementation. The example shown below shows a RISC- V 

cores complex, PCIe, L2, and MIPI amongst other components. 
 

The RVEXE-COMPONENT-ARCH field lists the ISA variant for 

the RISC-V core.   This describes the number of general 

purpose registers, and the various extensions (M, C, A, F, D, and 

Q).   The example below shows a RISC-V execution unit 

supporting 32 registers, multiply and divide, and single 

precision floating point. 
 

The RVEXE-COMPONENT-UARCH field lists the micro- 

architectural features for the specific implementation.  These 

include the cache sizes, and associativity, and branch 

prediction structures.  The example below shows a two-way 

set associative 32KB instruction and data cache, a BTB, a single-

level BHT, and a RAS. 
 

The L2-COMPONENT-UARCH lists the second-level cache 

micro-architectural features.  This includes the cache size and 

associativity, and error correction if enabled.   The example 

below shows a 4-way set associative 2 MB cache.
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The L2-COMPONENT-POWER field lists the number of 

power domains for the second level cache. This is a low-power 

feature. 
 

The RVCORE-COMPONENTS field lists all the core 

components for the specific implementation.   The example 

below shows, four RV Execution units, the L2 cache, the inter- 

connect, the interrupt, and debug unit, and the I/O ports. 
 

The LOW-POWER field describes the low power techniques 

used in the SOC like clock-gating, and multiple power domains. 
 

LOW-POWER = Domain(1), Clock-Gating(ON) 
 

The desired test benches are generated based on a 

command line that specifies the benches needs, and the 

configuration file.  As an example, all the test benches (Unit, 

Core. SOC) are generated using the configuration file, and the 

unit-level (RVEXE) bench shown in Figure 3 is generated using 

the second command line. 
 

Cmd1: rvtbgen –all rv101.config 
 

Cmd2: rvtbgen –rvexe rv102.config 
 

Subsequently, after the appropriate test bench is 

generated, random tests using the test pattern generators are 

generated.  Additionally, directed tests can also be written to 

run on the appropriate test bench.  The overall methodology 

for configurable test bench generation is shown in Figure 4. 

 

3.0 Stimulus 

 
3.1  Areas Under Test 

 

The configuration file is key to generating the constrained- 

random stimulus.  As an example, no floating instructions will 

be generated if the F mode is not supported. Another example 

is that back to back branch instruction generation-weight will 

be lower if branch prediction is not supported.   At the unit 

level, stimulus will be provided to the RVEXE unit or L2 unit. 

Examples are integer instructions for the RVEXE unit, and L2 

DCache interaction for the L2 unit. 
 

The core complex unit stimulus will include Cache Coherency, 

and Virtual Memory and Protection handling. Finally at the 

SOC-level interrupt handling, reset, and Low Power features 

will be tested. 

 
3.2  Instruction-Based Stimulus 

 

Instruction-based stimulus comes from a RISC-V 

instruction stream generator, constrained by both 

architectural  and  micro-architectural  constraints. 

Additionally, instruction-based stimulus can also come from 

directed tests.   Examples are integer instruction, branch 

instructions, floating point instructions, or memory 

instructions. 

 
 

 
 

Figure 3 Unit-Level (EXE) Test Bench 
 

 
 

Figure 4 Hierarchical Test-Bench Generation 
 
 
 
 

3.3 Transaction-Based Stimulus 
 

Transaction-based stimulus used in the L2 and Core is 

constrained by both architectural and micro-architectural 

constraints.  It is generated by UVM-Style sequencers, which 

subsequently call sequences.  Additionally, transaction-based 

stimulus can also come from directed tests. Examples are L2- 

I/D Cache interactions, L2-Memory interaction, and L2-Error 

Handling. 

 

4.0 Checkers 

 
4.1  Reference Model-Based Checkers 
 

The following reference-model checkers are need.   They 

will be generated from the configuration file.  As an example, 

the L2 cache size and associativity will determine the L2 

behavioral model, and subsequent checker.  Also, the branch 

prediction checker can be customized based on the RAS 

availability. 
 

1.     Pipeline Checker 

2.     Branch Prediction Checker 

3.     L2 Checker 
 

At the unit-level, for the RVEXE unit the following 

reference-model based checkers will be needed:
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   Pipeline Checker – The reference model for this checker 

will be the ISS.  A pipeline monitor from the RTL will extract 

PC update, and Register updates at instruction commit.  

These values will be checked against the output of the ISS 
 

Branch Prediction Checker – To accurately verify branch 

prediction, a reference model will be built to model the branch 

prediction structures (BTB, BHT, RAS). 
 

For the L2 unit, the following reference model checkers will 

be needed. 
 

L2 Checker – To accurately verify the L2, a L2 behavioral 

model will be built. The output of this checker will be checked 

against the RTL at a transaction granularity. 
 

These reference model checkers will be portable to the 

core complex and SOC level. 

 
4.2 Assertion Checkers 

 

Two kinds of assertion checks will be needed, these are 

low-level assertion checks, and high-level assertion checks. All 

these assertion checks will be portable for all three hierarchical 

levels, unit, core, and SOC. 
 

Low-level assertions are written at the unit-level for the 

RVEXE, and L2 and are internal to the module.   It is highly 

recommended that the RTL writer creates these assertions in 

conjunction with the RTL.   Examples of low-level assertions 

are: 
 

      Request-Grant:  A  request  is  granted  within  a  certain 

number of cycles. 

      One-Hot: The output of a signal is always one-hot. 

      Mutually-Exclusive:    Read    and    Write    are    mutually 

exclusive. 
 

High-level assertion checks can be written using low-level 

assertion checks, and it is recommended that the verification 

engineer write these checks. Areas where high-level assertion 

checks are recommended are: 
 

Interface Checks – Checking the interface between the 

various components of a SOC.  As an example, the interface 

between the L2 and the RVEXE. 
 

Cache Coherence Protocol Checks – The cache coherence 

protocol can be verified by providing a high-level SVA-based 

checker to  check  the finite-state machine.   In some cases 

cache coherence can also be checked by developing a 

reference model. 
 

Bus Transactions – Checking that the bus or the 

interconnect, handled all requests, and handled them in order 

with the right priority. 
 

All assertion-based checkers should be written in System 

Verilog, to be fully compatible with UVM. All assertions can be 

input into a formal verification tool for static formal 

verification. 

 

 

5.0 Pre-loaders/Injectors 
 
5.1  Cache/Array Loaders 

 
The cache pre-loaders will be generated based on a specific 

implementation configuration (cache size, associativity) 

provided in the configuration file. The cache loaders will be 

needed to preload the level one and level two caches during 

reset.  This is to prevent running through the entire boot 

sequence.   Additionally, cache preloading is required to get 

the cache initialized to a certain state to verify interesting 

scenarios (cache coherence) in an accelerated fashion. 
 

The array pre-loaders will be generated based on a specific 

implementation configuration (BTB size) provided in the 

configuration file.   The array loaders will have the ability to 

preload array  structures in  the  design,  like the BHT.    The 

primary use for array pre-loaders will be to be verify hard to 

test features in an accelerated fashion. 

 
5.2  Injectors 
 

Injectors can be used in all three levels of hierarchical test 
benches.    These  injectors will  be generated  based on  the 
configuration file.   For example, for ECC supported memory 
single bit errors, and double bit errors can be injected.  Three 
categories of injectors will be needed 
 

Interrupt Injection – To test both local and global 

interrupts, the interrupt injector will inject an interrupt as a 

request. 
 

Error Injection – To test the reliability features in the design 

like ECC the error injector will be needed to inject single or 

double bit errors. 
 

Event Injector – Debug requests, and other interesting 

events will be injected by the event injection mechanism. 
 

All injectors will be portable in all hierarchical levels, and 

configurable via the configuration file. 

 

6.0 Coverage 

 
6.1 Coverage-Based Methodology 
 

At each level of the hierarchy unit, core, or SOC a coverage-

based methodology will be used.    Coverage categories are list 

below: 
 

      Machine-Generated Code Coverage: Line, Code, Toggle, 

Expression. 

      Functional Internal: Internal coverage objects. 

      Functional Interface: Interface coverage objects. 
 

Functional coverage objects are generated from a test 

plan. Also, functional coverage objects will leverage assertions 

both low-level, and high-leve
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7.0 Conclusion 
 

This document shows hierarchical and configurable 

verification strategy to for RISC-V based SOCs.  A three-level 

hierarchy is proposed for test benches. The three levels are: 
 

1.     Unit, 

2.     Core 

3.     SOC 
 

Each level of the hierarchical test bench is configurable for 

both architectural and micro-architectural parameters.   The 

generation of the specific configurable test bench is automated 

based on a configuration file. 
 

This document also lists the areas under test, and stimulus 

and checkers needed. 
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